

Code No: C7611 JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD M.Tech I Semester Examinations March/April-2011 COMPUTATIONAL STRUCTURAL ANALYSIS (AEROSPACE ENGINEERING)

Time: 3hours

Max.Marks:60

Answer any five questions All questions carry equal marks

- 1. Explain the history of Finite Element Method in brief. Also Explain about FEM Related computer software. [12]
- 2. Show that the Stress (σ) = EBq for three nodded 1D element, by deriving and using the Quadratic shape functions. [12]
- 3. Derive the Strain displacement matrix for revolving triangular 2D element by Finite Element modeling. [12]
- 4. Explain:a) Coordinate systems and transformations.
b) Sparse matrix storage schemes.[12]
- 5. Determine the Eigen values and Eigenvectors for the stepped bar shown in figure:

 $A_1 = 25 \text{ mm}^2$, $A_2 = 15 \text{ mm}^2$, $l_1 = 250 \text{ mm}$, $l_2 = 150 \text{ mm}$, $E = 210 \text{ KN/mm}^2$, SP: wt: (f) = 7800 kg/m³. [12]

- 6. Explain the steps involved in the element stress computation and discuss steps for line elements, Triangular shell Elements and solid elements. [12]
- 7. A Composite wall consists of three materials as shown in the Figure. The outer temperature (T_0) be 20^oC, Convective Heat Transfer takes place on the inner surface of the wall with temperature = 800^oC and the convective heat transfer coefficient h = 25 W/m² ^oC .Determine the temperature distribution in the wall. Take Thermal conductivities of the materials 1, 2, 3 are K₁ = 20 W/m⁰ C, K₂ = 30 W/m^oC, and K₃ = 50 W/m^oC respectively. [12]

h T_w (1) (2) (3)
$$T_0 = 20^0 C$$

8. Explain about the Discretization of the Euler Equation. [12]

* * * * *

www.firstranker.com